Interlaced vs. progressive

Fora ASTRO-FORUM TEKNIK – TILBEHØR Interlaced vs. progressive

  • Dette emne har 10 svar og 6 stemmer, og blev senest opdateret for 15 år siden af norup. This post has been viewed 354 times
Viser 11 indlæg - 1 til 11 (af 11 i alt)
  • Forfatter
    Indlæg
  • #7801

    Mogens.Bildsøe
    Deltager
      • Nova

      Jeg har kig på Qcam 6 pro. Kameraet bruger interlaced scan ved udlæsning (i modsætning til progressive scan), og sætter således en frame sammen af 2 separat udlæste fields. Hvad er fordele/ulemper ved de to metoder? Og, kan interlaced scan ha’ betydning, hvis man skal forsøge sig med fotometri? Der kan vel sagtens opstå forskelle mellem de 2 fields, når de udlæses hver for sig?

      Mogens B


      Hilsen Mogens B.

      #7808

      mstauning
      Deltager
        • Black Hole

        Vender lige tilbage med nogle test skud der måske kan vise dig det, men det betyder intet for exponeringer der ikke er korte. For fotometri betyder det slet intet.

        #7814

        chrjensen
          • Super Giant

          Mener du ikke at CCD’en er interlined?

          Det betyder hvis jeg husker rigtigt , at udlæsning af CCD’en sker via nogle “kanaler” der løber vertikelt mellem de enkelte søjler af pixels. I en progressiv chip sker udlæsningen ved at ladningen overføres fra en celle til den næste. Interlined chips er derfor hurtigere at læse, mens prograssive chips har en højere følsomhed (ingen “kanaler” = større lysfølsomt område = større følsomhed).

          Mener at have læst at interlined chips kan give problemer ved fotometri hvis “peak’en” for en stjerne falder enten på en “kanal” eller på en lysfølsom pixel. Dette burde dog kunne undgås ved at vælge en teleskop/CCD kombination hvor aries disk’en fylder mindst 4 pixels (2×2).

          Er der nogle andre der kan bekrafte denne forklaring? Min hukomelse på området er lidt rusten.

          chrjensen2009-01-13 17:41:09

          #7817

          thor
          Deltager
            • Moon

            Hej,
            Jeg læste en testrapport af ccd videokameraer i Sterne und Weltraum, se:
            http://www.astronomycamerasblog.com/2008/05/22/test-report-in-german-magazine-sterne-und-weltraum/

            Her er det beskrevet at planetoptagelser med Watec 120 (som er et interlaced videokamera) giver en “bjælkeeffekt” (Balkeneffekt), dvs. en uønsket artefakt.
            Grunden er, at atmosfæreuro udtværer billedet i tidsrummet mellem tegning af billedet på skærmen, og det sker først for hver anden linie med interlaced teknik; i tiden der går inden det næste sæt (de interlacede) linier bliver tegnet ændrer atmosfæreuroen. Resultatet er en bjælkeeffekt i det samlede billede af planeten.
            Det har kun synlig effekt ved foto, ikke ved alm. obs. af tv-skærmen.

            håber det kan bruges til noget!

            mvh

            #7818

            thor
            Deltager
              • Moon

              hej igen,

              mit indlæg er måske ikke relevant; indlægger er dog relevant for analog video, men det ved jeg ikke om dit kamera er, beklager forvirringen.
              mvh

              #7828

              Mogens.Bildsøe
              Deltager
                • Nova

                Hej og tak for svar. Thor, ingen grund til forvirring- er også aktuelt ved CCD foto.

                Har læst lidt på google og fundet mange hits- her et, som forklarer forståeligt for alm. dødelige:

                Interline refererer til måden, hvorpå pixelværdier gemmes under udlæsning, mens interlaced/progressiv refererer til måden hvorpå udlæsningen foregår: 2 x field (interlaced: ulige rækker efterfulgt af ulige række, som derefter sammensættes til een frame) eller progressiv (alle pixels i rækkefølge)

                Det efgørende ved interlaced scan er derfor, om chippen lukkes elektronisk, så der ikke foregår eksponering under udlæsning, eller om der eksponeres under udæsning (hvorved field 2 jo eksponeres mens field 1 udlæses). Eksponerer f.eks. qcam 6 pro (som udlæser med interlaced scan) under udlæsning????

                Interlaced har, som Michael skriver, ingen betydning for længere eksponeringer (over ca. 15 s iflg. Henrik qcam).

                Hilsen Mogens B.

                #7830

                mstauning
                Deltager
                  • Black Hole

                  Som Thor skriver kommer der bjælker, men det kræver meget korte expo tider. Ved længere tider forsvinder det helt.

                  Jeg vil give Henrik ret i at man skal derop omkring, ved fokus tider (0,1 – 10 sek) ser jeg dem. Når jeg så lige laver en goto og tager en expo for at få center helt i øjet, gør jeg det med 30sek og der er ikke noget at se. Skal lige finde den PC jeg optog med Qcam sidst da den har filer liggende fra et par sekunder til 10min.
                  #7832

                  thor
                  Deltager
                    • Moon

                    Hej,
                    Jeg læste en testrapport af ccd videokameraer i Sterne und Weltraum, se:
                    http://www.astronomycamerasblog.com/2008/05/22/test-report-in-german-magazine-sterne-und-weltraum/

                    Her er det beskrevet at planetoptagelser med Watec 120 (som er et interlaced videokamera) giver en “bjælkeeffekt” (Balkeneffekt), dvs. en uønsket artefakt.
                    Grunden er, at atmosfæreuro udtværer billedet i tidsrummet mellem tegning af billedet på skærmen, og det sker først for hver anden linie med interlaced teknik; i tiden der går inden det næste sæt (de interlacede) linier bliver tegnet ændrer atmosfæreuroen. Resultatet er en bjælkeeffekt i det samlede billede af planeten.
                    Det har kun synlig effekt ved foto, ikke ved alm. obs. af tv-skærmen.

                    håber det kan bruges til noget!

                    mvh

                    #7838

                    motomandk
                      • Main Sequence

                      Her er hele forklaringen:

                      Types of CCDs

                      The four
                      basic types of CCDs are Linear, Interline, Full-Frame, and
                      Frame-Transfer. A Linear CCD consists of a single row of pixels–all in
                      one line. To define an image, a Linear CCD must be scanned across the
                      plane of the image, building the picture row by row. It is, obviously,
                      a much slower process than using a sensor that captures the entire
                      image simultaneously. And, it requires the use of stepper motors, which
                      increases the complexity of the system, the potential for mechanical
                      misalignment and breakdown, and greater noise. Linear CCDs were more
                      common in the past than they are now, but they are still used in most
                      flatbed scanners and in digital camera scanner backs.

                      Interline, Full-Frame, and Frame-Transfer designs are considered Area
                      Array CCDs, because they are composed of multiple rows and columns
                      forming a rectangular or square area.

                      Interline

                      In an Interline CCD, each pixel has both a photodetector and a charge
                      storage area. The storage area is formed by shielding or masking part
                      of the pixel from light and using it only for the charge transfer
                      process. The masked areas for each pixel form a vertical charge
                      transfer channel that runs from the top of the array to the horizontal
                      shift register. Purists will tell you that this vertical masked region
                      used for charge transfer is the CCD portion of the image sensor,
                      because that’s where the charge-coupling occurs. To distinguish the
                      area from the entire chip (the CCD sensor), they sometimes call it the
                      VCCD, for Vertical CCD (or sloppily, just the CCD). The horizontal
                      shift register may also be called the HCCD. However, to avoid
                      confusion, we will not use VCCD or HCCD nomenclature. The area that
                      remains exposed to light is more sensibly called the aperture.

                      The interline design allows the pixel’s electric charge to quickly be
                      shifted to an adjacent masked storage area where the charge can be
                      shifted down row by row to the horizontal shift register. The fast
                      transfer to the storage area frees up the pixel well to accept the next
                      batch of photons. In digital cameras, this quick availability of the
                      pixel aperture to accept the next frame of image data is what enables
                      the capture of video. The downside of the interline design is that a
                      significant portion of the sensor is no longer photosensitive, thereby
                      limiting the potential pixel density (“resolution”). To counter this,
                      interline CCDs require micro lenses to better direct the photons into
                      the photosensitive area of the pixel. Also, their design is more
                      complex to manufacture. Interline CCDs tend to be used primarily in
                      consumer digital cameras.

                      Full-Frame CCDs

                      Full-Frame CCDs devote the entire pixel to image capture. Therefore,
                      when the charge transfer occurs, the pixel is busy and cannot continue
                      to capture photons. To keep the pixels from continuing to read
                      additional light when they are involved in charge transfer (which can
                      lead to light smear on the image), digital camera designers usually put
                      a mechanical shutter between or behind the camera lens. The only time a
                      mechanical shutter is not necessary on a digital camera with a
                      full-frame CCD is in shooting situations in which the duration and
                      amount of light is controlled externally, such as with studio strobe
                      lights. Full-frame CCDs are used in higher-end digital cameras, for
                      greater capture density.

                      Frame-Transfer CCDs

                      Frame-Transfer CCDs are similar to Full-Frame, but they mask out half
                      of the array to provide temporary storage for the electric charges,
                      aptly called the “storage array”. Once an integration period ends and
                      the photosensitive pixels have acquired their charges, they are quickly
                      transferred to the storage array, and can operate without shutter
                      delay. This makes them very fast capture devices. But the subsequent
                      integration period overlaps the transfer time to the storage array
                      which causes image smear. Another downside is the larger size (and thus
                      higher cost) of Frame-Transfer CCDs to accommodate both the
                      photosensitive array and the storage array. Interline CCDs are an
                      improvement on this design and permit integration and transfer
                      simultaneously, causing only minimal image smear.

                      Even though there are only a handful of CCD manufacturers, competition
                      is fierce among them. Differentiation among their sensors is a key
                      issue in attracting volume buyers. So, it should come as no surprise
                      that each manufacturer is working on varying and improving CCD
                      architecture. Here are just a few examples (We’ll cover additional
                      designs in future articles):

                      Fuji’s Super CCD uses a unique honeycomb architecture of octagonal
                      pixels that makes maximum use of silicon real estate in the sensor.
                      Therefore, greater densities of pixels can be fit onto the CCD. The
                      shape of the pixel also allows for a larger area to be photosensitive.
                      Fuji claims better signal to noise ratio and better dynamic range with
                      this architecture. However, when we tested the first generation
                      consumer Super CCD in the Fujifilm 4700
                      digital camera last year, we were very disappointed in the quality of
                      the images produced. But the latest generation Fuji digital cameras
                      have been better optimized for the Super CCD technology. Our tests have
                      shown the pictures to be sharper than those taken with comparable
                      competitor cameras, and the overall image quality to be quite good.(See
                      our in-depth review of the Fujifilm FinePix S1 Pro.)

                      Progressive vs Interlaced CCDs

                      Data is read out from a sensor using one of two methods–progressive or
                      interlaced. Similar to scan modes used in video, these methods relate
                      to the order in which the CCD columns of data are fed to the horizontal
                      transfer register and off the sensor.

                      Progressive CCDs will read each line in the order in which they
                      appear in the image. Interlace CCDs will read first the even lines,
                      then the odd lines, and reintegrate them later through image processing.

                      Interline CCDs over 1MP (which are the typical sensors used in consumer
                      digital camera sensors) tend to be interlaced devices, in which one row
                      of electrodes controls the vertical transfer of the charges from two
                      rows of pixels.

                      In an ideal world, we would have sensors with CCD image quality and
                      CMOS intelligence. That is not currently possible. However, Kodak has
                      created an interline CCD–the KAI 2020 chip–which does some image
                      processing on the chip by adding clock drivers for double correlated
                      sampling. While Kodak will not call it an intelligent CCD (that’s the
                      domain of CMOS sensors that can do the analog-to-digital conversion, as
                      well as other image processing on chip), it calculates the dark current
                      (the baseline noise image that exists even when no light is present) of
                      the pixels and subtracts it from the illuminated image. This is a
                      popular method used in CMOS image sensors to neutralize noise and
                      artifacts. At present, the KAI 2020 is only an industrial sensor; it is
                      not used for digital cameras but is found in such applications as
                      automated inspections or traffic control.

                      Philips’ Frame-Transfer CCD is a technology called True Frame sensor
                      architecture (which was developed by Philips, but also used by Sanyo).
                      The storage area in this sensor is shielded from light by a metal layer
                      and can hold only about one-fifth of the full charge capacity of the
                      pixel. It is used only for feeding the scene to preview on the LCD
                      viewfinder and for extracting information about the scene so that
                      exposure and other settings may be determined. If the camera is in
                      monitor or preview mode, the electrons are quickly sent into storage,
                      with four fifths of them dumped (and lost) into the silicon substrate.
                      But if it is in picture mode, all the electrons are quickly read out
                      with none sent to the storage area. The method of readout is
                      progressive, rather than interlaced, and speed is the primary advantage
                      of this arrangement. While a typical interline CCD has a frame rate of
                      about 5-10 frames per second (fps), Philips claims that their Frame
                      Transfer CCD has a frame rate of 30-60 fps. That’s true video speed.
                      We’d expect there to be problems with smear if no shutter exists,
                      however, because integration time would overlap readout time.

                      En kommentar fra min side er, at ovenstående ikke omtaler ‘micro-lensing’ som er små linser der er ovenpå ‘fotobrønden og dækker hele brøndens area – dvs. at alle photoner der ‘lander’ på arealet vil blive ledt ned i brønden. Derved undgås den reduktion i følsomheden som ekstra elektronik til anti-blooming og interline eller påfører chippen.

                      /Henrik (H)

                      #7839

                      motomandk
                        • Main Sequence

                        OBS!! ovenstående tyvstjålet fra ExtremeTech:
                        http://www.extremetech.com/article2/0,2845,1157575,00.asp

                        /Henrik (H)

                        motomanDK2009-01-13 21:00:06

                        #10458

                        norup
                        Deltager
                          • Super Giant

                          Kom i tanke om denne tråd da jeg i dag fangede en fugl med et interlaced kamera. Det demonstrerer, hvorfor det ikke egner sig til korte eksponeringer af noget, der ændrer sig hurtigt. Der optages 25 billeder/sek, men hvert billede består af to interlaced eksponeringer.

                        Viser 11 indlæg - 1 til 11 (af 11 i alt)
                        • Emnet 'Interlaced vs. progressive' er lukket for nye svar.